
CHAPTER 1

INTRODUCTION

The discovery of pulsars has provided us with precision tools for investigating

Galactic dynamics, as probes of core collapse supernovae, as instruments to explore

ultra-dense matter equations of state, and as tests of gravity. In this chapter, we

will provide an introduction to gravitational waves (GWs), pulsars, pulsar timing,

and GW experiments with pulsar timing arrays (PTAs).

1.1 The Gravitational Wave Universe

Colloquially known as “ripples” in spacetime, GWs are propagating metric per-

turbations that cause subtle changes in the distances between objects. Obser-

vations of GWs offer a new window to viewing the Universe beyond traditional

electromagnetic-based astronomy. Just as we build many different kinds of tele-

scopes to observe different frequencies of light across the electromagnetic spec-

trum, different classes of GW observatories spanning the separate GW spectrum

frequency bands will enable us to probe particular sources and underlying physics.

The primary sources of GWs are compact objects, such as black holes, typi-

cally in binaries. PTAs observe in the low-frequency GW band and can be used

to observe supermassive black hole binaries at the very centers of distant merging

galaxies (Detweiler 1979; Hellings & Downs 1983; Romani 1989; Foster & Backer

1990), observations that allow us to understand dynamical processes during merg-

ers that are not possible with electromagnetic telescopes. Other possible sources

observable by PTAs include cosmic strings (Starobinskǐi 1979; Sanidas et al. 2013)

and primordial GWs from the inflationary epoch (Grishchuk 2005).
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1.2 A Primer on Gravitational Waves

Just over a century ago, Einstein (1915b) developed his landmark theory of gen-

eral relativity (GR), which describes the effect that mass and energy have on both

space and time. Gravity is explained by the geometric curvature of spacetime, with

objects following curved paths rather than experiencing an instantaneous central

force as described by Newtonian theory. GR has yielded explanations for observed

phenomena in disagreement with the Newtonian framework. Early in its devel-

opment, it explained the anomalous advance of Mercury’s perihelion precession

of Mercury beyond the predictions from Newtonian mechanics (Le Verrier 1859;

Einstein 1916). Apparent shifts in the position of a star due to the bending of light

around the Sun observed by Eddington during the 1919 solar eclipse quickly veri-

fied Einstein’s predictions and cemented the place of the theory in history (Dyson

et al. 1920; Einstein 1915a).

The mathematics of GR are represented with the Einstein field equations, a set

of 16 (10 unique) differential equations succinctly represented as

Gµν ≡ Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.1)

where the left hand side describes the geometric curvature of spacetime and the

right hand side describes the local source energy and momentum distribution mul-

tiplied by fundamental constants. Here, Gµν is the Einstein tensor, containing

terms that include the metric tensor gµν which determines the spacetime interval

between two points, and functions of derivatives of the metric in both the Ricci

tensor Rµν and the Ricci scalar curvature R. The stress-energy tensor Tµν contains

terms for the density and flux of both energy and momentum. In normal spacetime,

all tensors in Eq. 1.1 are symmetric 4×4 tensors, e.g., the indices µ, ν ∈ {0, 1, 2, 3}

are four arbitrary coordinates, one in time and three in space.
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In the linearized gravity regime, we can write the Einstein field equations as

�h̄µν = −16πG

c4
Tµν , (1.2)

where �h̄µν represents the GW propagation with the usual wave operator. For

more details, see the appendix to this chapter. We can use Eq. 1.2 to derive useful

scaling relations for two orbiting point masses emitting GWs. Given two masses M

orbiting at a separation R with a characteristic timescale (period) T and observed

at a distance D, it can be shown (by dimensional analysis or again see the appendix

for this derivation) that the GW strain is approximately

h ∼ G

Dc4
MR2

T 2
∼ G

Dc4
MR2f 2 ∼ G

4π2Dc4
MR2Ω2, (1.3)

where f is the frequency of emission (Ω is the angular orbital frequency). In the

Newtonian limit, we use the Keplerian orbital frequency to relate Ω2 ∼ GM/R3

and thus we arrive at

h ∼ (GM)2

4π2c4DR

≈ 6× 10−16

(
M

108M�

)2(
Mpc

D

)(mpc

R

)
, (1.4)

where the mpc separation is roughly when the energy loss of the system is domi-

nated by GW emission. The GW frequency is given by

f ∼ 1

2π

(
GM

R3

)1/2

≈ 100 nHz

(
M

108M�

)1/2 (mpc

R

)3/2
. (1.5)

Fiducial values are for expected supermassive black hole binaries in merging galax-

ies in local galaxy clusters that are in the final stages of the GW-dominated inspiral.

We can relate the GW strain to the timing precision required from a pulsar.

Relating the GW to the fractional change in distance (h ∼ ∆L/L), for a given h,
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we need to keep track of the position of a pulsar to well within ∆L. We thus have

∆L ∼ hL ∼ hcT

≈ 9.5 m

(
h

10−16

)(
T

10 yr

)
, (1.6)

where L ∼ cT is the length from the light/GW travel time. The timing precision

is then trivially found to be

∆t ∼ ∆L

c
∼ hT

≈ 32 ns

(
h

10−16

)(
T

10 yr

)
. (1.7)

Therefore, we require timing precision at the nanosecond level from pulsars in order

to measure the effects of passing GWs.

1.3 The Discovery of Pulsars

Baade & Zwicky (1934) first described the theoretical possibility of a neutron

star, a small, dense object composed primarily of neutrons originating as a stellar

remnant from a supernova; such an object could support itself from gravitational

collapse beyond the Chandrasekhar (1931) limit. The idea of neutron stars re-

mained a theoretical curiosity through the middle of the 20th century, it took

many decades before their existence could be observationally confirmed. The field

of pulsar astronomy came into existence in 1967, when graduate student Jocelyn

Bell (Burnell) detected a celestial pulsed signal at a radio frequency of 81.5 MHz

at the Mullard Radio Astronomy Observatory near Cambridge, UK (Hewish et al.

1968). Temporarily named LGM-1 for “little green men” in reference to a possible

though unlikely transmission from an extraterrestrial intelligence, the radio source

was quickly theorized to be associated with a rapidly rotating neutron star (Gold

1968; Pacini 1968; Gold 1969). Confirmation came with the discovery of regular
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pulsations from the Crab Nebula supernova remnant and the measurement of a

steady slow down in its spin rate (Staelin & Reifenstein 1968; Comella et al. 1969;

Richards & Comella 1969).

While all neutron stars are extraordinary objects, it was the discovery of the

subclass of recycled, millisecond pulsars (MSPs) that truly allowed for precision

timing experiments. Backer et al. (1982) discovered B1937+21, with a period of

1.558 ms, at Arecibo Observatory, an order of magnitude smaller than the period

of the young Crab pulsar. It remains one of the fastest spinning pulsars known, as

well as one of the most precisely timed. Since then, several hundred MSPs have

been discovered, and their extreme spin stability has opened the door to a wide

range of tests of fundamental physics previously discussed.

1.4 Basic Properties of Pulsars

The most fundamental observables of pulsars are the spin period P and period

derivative Ṗ . Different populations of pulsars fill different areas of this phase

space. Figure 1.1 shows the phase space in the form of the P − Ṗ diagram with

data taken from Manchester et al. (2005)1 and Olausen & Kaspi (2014)2. The

region in the center contains canonical pulsars (CPs), those with moderate (∼ 1 s)

periods and radio emission powered by rotation. CPs start their lives in the top

left of the figure, at low P and high Ṗ , and travel toward the bottom right (longer

but more slowly changing periods); the solid lines denote characteristic ages of

the pulsar assuming rotational energy is converted entirely into magnetic dipole

radiation and the magnetic field strength is constant. When CPs move to the

lower right, the emission mechanism shuts off and they cross the pulsar “death

1http://www.atnf.csiro.au/research/pulsar/psrcat
2http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
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line” into the shaded “graveyard” region. Note that the region is ill-defined and

is a function of the emission mechanism itself. Once they cross into the region,

the “dead” objects cease being observable radio pulsars. For neutron stars with

a main-sequence binary companion, when the companion begins to evolve off the

main sequence and increase in size, mass transfer can occur onto the neutron

star. The process of accretion will spin up neutron stars to millisecond periods

and reactivate the emission mechanism. Once fully “recycled” in this manner,

MSPs can become extremely spin stable, have a small period derivative, and act as

extremely accurate and precise clocks. Magnetars, whose primary energy reservoir

is in their magnetic fields, are shown in the top right.

Dispersion in the ionized interstellar medium results from a frequency-

dependent refractive index, resulting in pulses being delayed as a function of radio

frequency ν, with lower frequency emission traveling slower than higher frequency

emission. The dispersive delay from infinite frequency is ∆t ∝ DM/ν2, where DM

is the dispersion measure, equal to
∫ L
0
nedl, the integral of the electron density

along the line of sight. Figure 1.2 shows the dispersive delay as a function of fre-

quency for PSR J1713+0747 and the effect of proper de-dispersion. DM is another

fundamental observable of pulsars observed at multiple radio frequencies, although

precision estimation of DM is non-trivial (see Chapter 3 and Cordes et al. 2016).

Precise time-tagging of pulses from pulsars is performed by standard signal

processing methods tied to accurate timekeeping. Individual pulse shapes appear

very different but average together into a stable pulse profile. Such a waveform is

used as a template in matched filtering of new pulse profile data, a procedure that

finds the optimal pulse time of arrival (TOA) assuming that the observed pulse

at an epoch is a noisy version of the template. In general, bright pulsars with

sharp features in their template shapes and short periods will perform better as
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Figure 1.1: P − Ṗ diagram. The central region shows canonical pulsars while the
top right shows magnetars and the bottom left shows millisecond pulsars. Lines of
constant characteristic age (solid), surface magnetic field (dashed), and spin-down
luminosity (the loss rate of rotational energy given the assumption of complete
conversion of rotational energy into radiation; dashed-dotted) are overplotted. The
shaded gray region is the pulsar graveyard, with the boundary at the “death line”.
Data are taken from Manchester et al. (2005) and Olausen & Kaspi (2014).

precision clocks. Since signal-to-noise ratios (S/Ns) for single pulses from typical

MSPs are relatively low, many pulses are averaged together in a process known as

folding. The procedure assumes a well-known initial timing model for the pulsar

such that smearing of the pulse across frequency is minimized. See Chapter 5 for

more details on the topics discussed here.
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Figure 1.2: Example of dispersion in pulses with data taken from the Green Bank
Telescope for the 24-hour global campaign on PSR J1713+0747. The panels on
the left show dispersed pulses (with wraps in phase due to pulse folding) while the
panels on the right show de-dispersed and aligned pulses. The pulses have been
coherently de-dispersed within each of the 6.25 MHz frequency channels. The
two horizontal gaps are pre-masked radio frequency interference from a Global
Positioning System satellite (signal at ∼ 1620 MHz and its reflection lower in the
band). Top: Radio pulses as a function of frequency and pulse phase. Bottom:
Pulses summed over all frequencies.

Precision pulsar timing relies on our ability to accurately track each rotation

of the pulsar over a baseline of many years. Using both the TOAs and an initial

timing model, we can update and introduce new parameter estimates that describe

the kinematics of the pulsar-observatory system. In addition to the timing model

parameters, we obtain timing residuals from the fit, defined as the difference be-
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tween the data (pulse TOAs) and the timing model. Residuals allow models to be

updated over time. They also contain useful information about the noise processes

and allow us to properly characterize the noise model separately from the tim-

ing model. Residuals often show noise inconsistent with errors from the template

fitting of a finite S/N pulse alone.

1.5 Tests of Gravity with Pulsars

1.5.1 Measurements of Post-Newtonian Gravity

High-precision pulsar timing experiments have allowed for a number of extremely

stringent constraints on GR. One common method of placing constraints is in

the Parameterized Post-Newtonian (PPN) formalism, where various order post-

Newtonian corrections to classical gravity quantify physically-motivated deviations

from GR. See Will (2014) for an overview of the 10 PPN parameters. Pulsar timing

has provided some of the strongest constraints on a number of the PPN parameters.

The three α parameters measure if there exist preferred-frame effects. The

current best limit on α1 = 4 × 10−5, which causes a polarization of the pulsar’s

eccentricity vector, comes from PSR J1738+0333 (Shao & Wex 2012). Non-zero

α2 causes spin precession and alters the pulsar’s observed orbital inclination. The

non-detection of precession in the pulse profile shapes of two pulsars led to a

limit of α2 < 1.6 × 10−9 at the 95% confidence level (Shao et al. 2013). The

parameter α3, which measures violations of total momentum conservation, is the

most stringent PPN constraint, with a value 4 × 10−20 from a set of measured

anomalous eccentricities in MSP binary orbits (Stairs et al. 2005).

A similar analysis of stable pulse profile shapes as with α2 allowed a limit on ξ,

representing anisotropies within gravitational interactions, equal to ξ < 3.9× 10−9
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also at the 95% level (Shao & Wex 2013). Both α3 and ζ2 measure violations of

total momentum conservation in the form of self-acceleration of a binary center of

mass. Since α3 is so strongly constrained, its contribution to the self-acceleration

is negligible, allowing the upper limit on ζ2 to be measured at the 4 × 10−5 level

(Will 1992).

Other constraining tests of gravity have been possible with pulsar timing. As

an example, Zhu et al. (2015) placed constraints on temporal changes in the grav-

itational constant G close to the limit from Lunar Laser Ranging (Hofmann et al.

2010) and over a significantly longer baseline. Tests of Strong Equivalence Princi-

ple violations in the strong-field limit were set by the circularity of binary systems

in the Galactic potential, with the parameter ∆ < 5.6× 10−3 (Stairs et al. 2005).

1.5.2 Indirect evidence of GWs

Observational evidence for the existence of GWs first came from pulsar timing ex-

periments. Hulse & Taylor (1975) discovered the first double neutron star system,

B1913+16, at Arecibo, which eventually led to the 1993 Nobel Prize in Physics.

A tight binary with an orbital period of 7.75 hours, the system is losing angular

momentum by radiating away energy that is not detected in the electromagnetic

spectrum. The loss is inferred to be in the form of GWs, with the period becoming

smaller and the size of the orbit shrinking by about 1 cm per year (Weisberg et

al. 2010). The decay of the period matched the prediction from GR, with the

observed-to-predicted rate of decay ratio equal to 0.96± 0.09, without taking into

account an additional kinematic correction to the observed rate from the Galactic

potential (Taylor & Weisberg 1982). Later work continued to refine the ratio, with

the value of the ratio now measured to be 0.997 ± 0.002, a much more stringent

constraint on GR (Taylor & Weisberg 1989; Weisberg et al. 2010).
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1.5.3 Pulsar Timing Arrays

The concept of a pulsar timing array experiment for the detection of GWs dates

back to the realization that Doppler tracking of several spacecraft within the solar

system simultaneously could allow for a detection of GWs (Estabrook & Wahlquist

1975). It was soon realized that regular, pulsed emission could be used in the de-

tection of low-frequency GWs as the time interval between pulses changed (Sazhin

1978; Detweiler 1979). Correlations between arrival times of pulses from an array

of pulsars could be used to detect GWs of order nanohertz frequencies from merg-

ing supermassive black hole binaries (see Eqs. 1.4, 1.5; Hellings & Downs 1983;

Romani 1989; Foster & Backer 1990).

Currently, three pulsar timing array experiments are underway, run by the

North American Nanohertz Observatory for Gravitational Waves (NANOGrav;

McLaughlin 2013), the European Pulsar Timing Array (EPTA; Kramer & Cham-

pion 2013), and the Parkes Pulsar Timing Array (PPTA; Hobbs 2013; Manchester

et al. 2013). All three collaborations combine their data in a global effort called

the International Pulsar Timing Array (IPTA; Hobbs et al. 2010; Manchester &

IPTA 2013).

Pulsar timing will result in the direct detection of low-frequency GWs in

the near future. The first direct detection of GWs in the hertz-kilohertz band

has recently come from the Laser Interferometer Gravitational-Wave Observatory

(LIGO; Abbott et al. 2016a). They announced the detection of GWs coming from

merging stellar mass black holes (more massive than previously predicted) with

a signal strong enough to be visible by eye among the noise. Besides these two

types of experiments, the Laser Interferometer Space Antenna (LISA) is a future

space-based LIGO analog designed primarily to observe microhertz-hertz GWs

from massive black hole binaries and extreme mass ratio inspirals (massive black
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holes with small compact object companions). In addition, very-low-frequency

GWs (sim10−16 Hz range) currently are being probed by cosmic microwave back-

ground experiments. All four bands will need to be observed in order to detect

sources across the full GW spectrum.

LIGO has demonstrated the need for a complete understanding of the detector

and the contributing noise sources in order to properly attribute an observed signal

to a GW source. During the initial LIGO run, the characterization of the noise

model demonstrated their understanding of both the instrumental systematics and

their low sensitivity during that phase of the project; they indeed detected no

astrophysical signal at that time. Upgrades to the facility have lowered the noise

floor, with current sensitivity allowing them to make the first few detections (see

also Abbott et al. 2016b). Further improvements will allow LIGO to become an

extremely sensitive GW instrument. Similarly, we require an understanding of the

noise sources within the PTA, as the signal propagates from the pulsar through

the interstellar medium to the telescope, so that we can confidently detect and

then regularly observe GWs.

1.6 Characterization of Pulsar Timing Arrays

This dissertation describes efforts to understand a PTA as a Galactic-scale de-

tector. We want to first characterize our detector and eventually improve it, for

both the initial detection of GWs and long-term observations using PTAs. This

work focuses on all aspects of pulse propagation through the detector. In Chap-

ter 2, we discuss a multi-telescope campaign that observed one of the best-timed

pulsars. We describe the timing errors that result from non-simultaneous multi-

frequency observations and the resultant mis-estimation of the pulse dispersion

measure (DM) in Chapter 3. We next investigate causes of DM variations from a
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variety of effects in Chapter 4, including linear trends, periodic or quasi-periodic

changes, and stochastic variations. In Chapter 5, we develop a white noise budget

for pulse TOAs on short (. 1 hour) timescales, characterizing the timing precision

of the NANOGrav MSPs. In Chapter 6, we investigate the timing noise excess

beyond the white noise model and update scaling relations of the excess noise as

a function of fundamental pulsar observables, moving us towards a comprehensive

noise model for the NANOGrav MSPs. In Chapter 7, we present future avenues for

research into the further characterization and calibration of our pulsar timing GW

detector. Finally, in chapter 8, we summarize our conclusions. We also include a

number of appendices at the end as reference material. Appendix A documents

the PyPulse program, a set of software tools developed primarily for handling of

pulse profile data purely in Python. Appendix B documents Quicklook, a program

built with PyPulse for the rapid data processing and inspection of pulse profiles

and their related data products.

1.7 Appendix

Here we will derive the result of Eqs. 1.2 and 1.3. First, we will consider GR for

isolated systems, which can be approximated in two limits. Consider some source

of gravity of mass ∼ M and size ∼ R that is varying on a timescale ∼ T . We

define the dimensionless parameters

ĉ =
cT
R , Ĝ =

GMT 2

R3
, (1.8)

in a system where we choose the units such that M ∼ R ∼ T ∼ 1 and Ĝ ∼ G,

ĉ ∼ c. We can estimate the strength of gravity with the dimensionful compactness

parameter (the ratio of the gravitational binding energy to the rest energy) ε ∼

Eg/Mc2 ∼ Φ/c2 ∼ GM/Rc2 ∼ Ĝ/ĉ2, where Φ is the gravitational potential. In
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the low-speed limit ε ∼ (v/c)2 � 1 (Ĝ fixed), it is useful to expand Φ in powers of

1/ĉ. The O(1) term yields the Newtonian limit for gravity while the O(1/ĉ2) term

yields what is known as post-1-Newtonian gravity, with higher order terms yielding

higher post-Newtonian corrections. However, in the low source gravity limit when

when Ĝ is small (O(Ĝ), ĉ fixed), we obtain the linearized gravity formalism useful

for describing GWs. In the Ĝ → 0 limit, we recover the equations of motion for

special relativity. Both limits are useful for simply describing a wide range of

different phenomena.

GWs are derived from plane-wave solutions in the linearized gravity framework.

For clarity, we define our coordinates such that xµ = (ct, x, y, z) and the Minkowski

metric is ηµν = diag(−1, 1, 1, 1). We can approximate the metric in the weak-field

limit as flat, Minkowski spacetime with a small perturbation metric added,

gµν = ηµν + hµν +O([hµν ]
2), |hµν | � 1. (1.9)

We will ignore all higher-order (non-linear) terms of hµν . It is convenient to define

the trace-reversed metric perturbation as

h̄µν ≡ hµν −
1

2
hηµν (1.10)

while choosing the Lorenz gauge such that ∂µh̄µν = 0. We note that h = ηµνhµν

and therefore h̄ = −h and is in “trace-reversed” form. With our choice of gauge,

the linearized Einstein field equations are then, after combining Eqs. 1.1 and 1.10,

we arrive at Eq. 1.2, which we again write as

�h̄µν = −16πG

c4
Tµν . (1.11)

In vacuum far away from any source, the right hand side is zero and we arrive at

the usual form of the wave equation, �h̄µν = 0. Given the vacuum assumption,

we can write the metric perturbation in the transverse-traceless (TT) gauge, such
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that it is purely spatial (hTT
0ν = 0), transverse to the direction of motion (∂µhTT

µν =

0), and traceless (ηµνhTT
µν = hTT = 0). We note that the trace-reversed metric

perturbation, again assuming the vacuum solution, will equal the original metric

perturbation in the transeverse-traceless gauge (h̄TT
µν = hTT

µν ) and so we will drop

the “bar” for convenience.

We can write the usual ansatz for the wave equation solution as

hTT
µν = Re

[
Cµνe

ikλx
λ
]

= Re
[
Cµνe

i(kz−ωt)
]
, (1.12)

where Cµν is a constant, symmetric “amplitude” metric, kλ = (ω/c, k1, k2, k3) =

(ω/c, 0, 0, k) is the wave vector pointing in the z-direction, ω is the wave (angular)

frequency. The usual dispersion relation ω = kc is satisfied because the wave

vector is null (kλk
λ = 0) in the vacuum solution. Under the condition that the

perturbation is transverse, we have in general that

∂µhTT
µν = iCµνk

µeikλx
λ

= 0, (1.13)

which implies kµCµν = 0. Like hTT
µν , by definition Cµν must be purely spatial and

thus C0ν = 0, and combining both conditions on Cµν , we find that C3ν = 0 and

the tensor’s only nonzero components are where µ, ν ∈ {1, 2}. The matrix form

can be written as

Cµν =



0 0 0 0

0 C11 C12 0

0 C12 −C11 0

0 0 0 0


≡



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


, (1.14)

where we have utilized the fact that Cµν must be traceless and symmetric. On the

right, we have renamed the coefficients to describe the “plus” (+) and “cross” (×)

polarization modes of the wave.
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We will now derive the scaling relations for a binary system emitting GWs

as shown by Eq. 1.3. Consider two masses m1, m2 orbiting in a binary far away

from the observer at a distance D. Analogously to electromagnetism, we can use a

multipole formulation to describe the nature of gravitational radiation. Note that

such a formulation treats gravity as a vector (spin-one) field rather than a tensor

(spin-two) field; however, it is useful to obtain the approximate scaling relations.

The mass monopole, equivalent to the electric monopole, will simply equal
∑

imi

and does not produce radiation because it is conserved. The mass dipole, equiva-

lent to the electric dipole, will be
∑

imiri and will also produce no radiation. The

first time-derivative will be
∑

imiṙi, which is the constant momentum and there-

fore cannot produce radiation either. Now we must also consider the equivalent to

magnetic dipole radiation. The magnetic moment µ ∼ r× j ∼ r× (ρv), where r is

the position vector and j is the electric current density equal to the charge density

ρ times the velocity vector v. Thus, the analogous expression to the magnetic mo-

mentum is the angular momentum of the system. Since the second time-derivative

of the magnetic moment is what generates magnetic-dipole radiation, we focus on

the second time-derivative of the angular momentum, which is zero and therefore

no gravitational dipole radiation can be generated.

The next order term is the gravitational quadrupole, again analogous to the

electric quadrupole. The power radiated for such a quadrupole is L ∼ 〈
...
-I
2〉, where

Ijk ∼
∑

imirijrik is the second moment of the mass distribution, -Ijk is the trace-

free part of Ijk, and the average occurs over many characteristic periods of the

source.

Recall the two masses orbiting each other and assume m1 ∼ m2 ∼ M . The

amplitude of the gravitational field far from the source (and transverse) will be h ∝

I/D ∼ MR2/D (analogous to the electric radiation field E ∼ qa/D). We require
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two time derivatives of the Ijk so that in geometrized units (where G = c = 1 and

mass, length, and time are in equivalent units), the strain is dimensionless. By

dimensional analysis, we include the prefactor G/c4, and

hjk ∼
G

Dc4
Ïjk. (1.15)

For reference, the full form of the quadrupole formula can be solved with the use

of Green’s functions and Eq. 1.2, and includes Ïjk evaluated at the retarded time

t− r/c and another factor of 2 out front. We can continue with the approximation

and show that Eq. 1.15 can be written as

h ∼ G

Dc4
MR2

T 2
, (1.16)

which yields the result given by Eq. 1.3. See chapter 36 of Misner et al. (1973)

and chapter 7 of Carroll (2004) for more information regarding the choices made

in our approximations.
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