Strategic uses of single dishes (and GB) in Fast Radio Burst detection

Duncan Lorimer, Dept. of Physics and Astronomy, West Virginia University

FRB lowdown

- 21 published so far
- Flux > 0.5 Jy @ 1.4 GHz
- Pulse widths > few ms
- Highly dispersed
- Weakly scattered
- One FRB so far repeats!
- Few arcmin localization
- One counterpart so far
- ~few x 1000/day/sky

Credit: Thornton et al. (2013)

What might FRBs probe?

New/exciting physics

- Cosmological NS census?
- Non-stellar origin?
- Fundamental tests?

The intergalactic medium

- Electron content □ missing baryons?
- Magnetic field || to line of sight

Cosmology

- Rulers
- DM halos, DM/DE parameterization

Single-pulse search pipeline

A Bright Millisecond Radio Burst of Extragalactic Origin

D. R. Lorimer,^{1,2}* M. Bailes,³ M. A. McLaughlin,^{1,2} D. J. Narkevic,¹ F. Crawford⁴

Pulsar surveys offer a rare opportunity to monitor the radio sky for impulsive burst-like events with millisecond durations. We analyzed archival survey data and found a 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3° from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the universe imply that the burst is less than 1 gigaparsec distant. No further bursts were seen in 90 hours of additional observations, which implies that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and, if detected, could serve as cosmological probes.

2014: FRB 121102 at Arecibo

2015: FRB 110523 at GBT

Credit: Masui et al. (2015)

More "theories" than bursts!

- Colliding compact objects (e.g. NS-NS)
- Supernovae
- Collapsing NS
 BH (blitzar)
- Black hole absorbing NSs
- Giant pulses from pulsars/magnetars
- Neutron star asteroid belt interaction
- More exotic (strange) star interactions
- Galactic Flare Stars
- Light sails from ET
- Dark matter
- Cosmic strings
- White holes

2016: FRB 121102 repeats!

40

40

... or maybe something else?

No!

No!

Maybe?

Credit: Spitler et al. and Scholz et al. (2016)

2017: FRB 121102 localized!

We have no idea what FRBs are!

- What is the source of FRB 121102?
 Are the radio sources related?
 - Magnetar/AGN interaction?
- Is FRB 121102 representative?
 Do all FRBs repeat?
 - Are there multiple classes?
- What are best strategies going forward?
 Positional localization crucial
 - Large area coverage also needed

GBTrans [Ellingson et al.]

- -1.4 GHz / 50 MHz
- Realtime processing
- FRB rate ~1/month?
- Target nearby clusters
- Beginning "shadowing"
 - Swift
 - LIGO
 - Fermi
 - CHIMERA

FRBs at Arecibo - ALFABURST

- 7 beams commensal observing
- 56 MHz current bandwidth
- DM range out to 10,000 pc/cc
- Realtime pipeline (similar to Parkes)

FRBs at GBT - GREENBURST

- 1 beams commensal observing
- Even when other feeds in use!
- 800 MHz current bandwidth
- DM range out to 10,000 pc/cc
- Realtime pipeline

Strategies going forward

- Single dish surveys – FAST
 - FLAG FLAG++??
 - ALFABURST D ALPACA D ++?
- Broadband single-dish follow-up
 - High sensitivity
 - FRB spectra?
- Shadowing by other arrays?
 - Build something at GB?
 - Make use of RQZ
 - Potential for a PSR telescope?

Credit: Steve Ellingson

(My) bold predictions

2020: 100s FRBs found - CHIME - REALFAST - ASKAP

- 2025: 1000s of FRBs known -SKA and its pathfinders
- 2030: FRBs essential cosmological tools —Many papers on this already!