# BlackHoles@Home

## Translations

**Español***Courtesy Bertha Cuadros-Melgar***Ελληνικά***Courtesy Bertha Cuadros-Melgar***Italiano***Courtesy Antonio Pasqua***日本語***Courtesy Yuri Ozaki***Português***Courtesy Leonardo Werneck*

## Newsletter

**Want to know what's on the horizon?** **Sign up for the BlackHoles@Home newsletter**

## Basic Introduction

**Slides from the BlackHoles@Home APS 2019 press conference**

## Technical Introduction

When a gravitational wave
is observed, answering the question "What exactly produced this?" is crucial to advancing science.
Inferring physical properties of even the simplest observed gravitational wave source-black hole binaries-requires catalogs of
numerical relativity gravitational waveforms spanning all seven dimensions of intrinsic parameter space (i.e., mass ratio,
plus the three spin vector components of each black hole).
Due to the requirement that virtually all numerical relativity simulations of black hole binaries to date be run on supercomputers, all such catalogs *combined* sample this parameter
space to fewer than *3.2 points per dimension*.

These tiny catalogs have been sufficient for noisy gravitational wave observations to date, as the noise acts to obscure the relatively small effects of misaligned spins, but they will not be good enough moving forward.

**Colliding black holes!**

**Interactive NRPy+ Tutorial!**

**BlackHoles@Home** aims to reduce the cost in memory of numerical relativity black hole and neutron star binary simulations by ~100x,
through adoption of numerical grids that fully exploit near-symmetries in these systems. With this cost savings,
black hole binary merger simulations can be performed entirely on a *consumer-grade desktop (or laptop) computer*.

BlackHoles@Home is destined to run on the BOINC infrastructure (alongside Einstein@Home and many other great projects), enabling anyone with a computer to contribute to construction of the largest numerical relativity gravitational wave catalogs ever produced.

**Want to know what's on the horizon? Sign up for the BlackHoles@Home newsletter.**

## People

**Zachariah B. Etienne** is an associate professor of Physics & Astronomy at West Virginia University.

**Ian Ruchlin** was a postdoctoral fellow at West Virginia University.